LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Homology modeling, molecular docking and molecular dynamics studies of the catalytic domain of chitin deacetylase from Cryptococcus laurentii strain RY1.

This study provides structural insights into chitin deacetylase, over-expressing under nitrogen limiting condition in Cryptococcus laurentii strain RY1. The enzyme converts chitin, the second most abundant natural biopolymer, to chitosan,… Click to show full abstract

This study provides structural insights into chitin deacetylase, over-expressing under nitrogen limiting condition in Cryptococcus laurentii strain RY1. The enzyme converts chitin, the second most abundant natural biopolymer, to chitosan, which offers tremendous applications in diverse fields. To elucidate the structure-function relationship of this biologically and industrially important enzyme, a homology model of the catalytic domain was constructed. The stability of the structure was assessed by molecular dynamics simulation studies. Tryptophan 151 of the domain was identified to form hydrogen bond and stacking interaction with chitin upon docking. In Silico substitution of Tryptophan (W) to Alanine (A), Phenylalanine (F) and Aspartate (D) corroborated the importance of the Tryptophan residue in interaction with the substrate. This is the first report of unravelling the structural characteristics of chitin deacetylase from Cryptococcus and understanding the approach of the enzyme towards its substrate. Our results would be helpful to perform experimental validations and apply quantum mechanics/molecular mechanics techniques to determine the detailed catalytic mechanism and enhance the industrial potency of the enzyme.

Keywords: chitin deacetylase; chitin; cryptococcus laurentii; domain; laurentii strain

Journal Title: International journal of biological macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.