LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation.

Photo from wikipedia

Oxaloacetic acid (OA) is naturally found in organisms and well known as an intermediate of citric acid cycle producing ATP. We evaluated the effects of OA on tyrosinase activity and… Click to show full abstract

Oxaloacetic acid (OA) is naturally found in organisms and well known as an intermediate of citric acid cycle producing ATP. We evaluated the effects of OA on tyrosinase activity and structure via integrating methods of enzyme kinetics and computational simulations. OA was found to be a reversible inhibitor of tyrosinase and its induced mechanism was the parabolic non-competitive inhibition type (IC50=17.5±0.5mM and Ki=6.03±1.36mM). Kinetic measurements by real-time interval assay showed that OA induced multi-phasic inactivation process composing with fast (k1) and slow (k2) phases. Spectrofluorimetry studies showed that OA mainly induced regional changes in the active site of tyrosinase accompanying with hydrophobic disruption at high dose. The computational docking simulations further revealed that OA could interact with several residues near the tyrosinase active site pocket such as HIS61, HIS259, HIS263, and VAL283. Our study provides insight into the mechanism by which energy producing intermediate such as OA inhibit tyrosinase and OA is a potential natural anti-pigmentation agent.

Keywords: tyrosinase activity; activity structure; tyrosinase; acid; oxaloacetic acid

Journal Title: International journal of biological macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.