LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release.

Photo by fiercelupus from unsplash

Conventional glass-ionomer cements (GIC) are one of the most prevalent dental restorative materials, but their use is limited by their relatively low mechanical strength. Efforts have been made to improve… Click to show full abstract

Conventional glass-ionomer cements (GIC) are one of the most prevalent dental restorative materials, but their use is limited by their relatively low mechanical strength. Efforts have been made to improve the mechanical properties by addition of various fillers of which nano-sized particles appears to be a promising strategy. In the current study, effect of addition of nanochitosan particles in GIC (NCH-GIC) on compressive strength, flexural strength, wear resistance and fluoride release has been evaluated and compared with conventional GIC (C-GIC). Nanochitosan was synthesized by ionic cross linking method and its particle size was found to be 110-235nm. Nanochitosan was mixed with glass ionomer powder at a concentration of 10wt.% and cement samples were prepared. NCH-GIC had significantly higher compressive strength values which could be attributed to early formation of aluminium polysalts. Similarly, flexural strength of NCH-GIC (21.26MPa) was significantly higher than C-GIC (12.67MPa). Wear resistance was also found to increase due to better integrated interface between the glass particle and polymer matrix bonding in NCH-GIC. Fluoride release was significantly higher in NCH-GIC compared to C-GIC for 7 days. It can be anticipated that addition of nanochitosan to GIC will improve the anti-cariogenic and mechanical properties for high strength applications.

Keywords: strength; glass ionomer; nch gic; glass; mechanical properties; fluoride release

Journal Title: International journal of biological macromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.