LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypolipidemic effect of mannans from C. albicans serotypes a and B in acute hyperlipidemia in mice.

Mannans, which are biological macromolecules of polysaccharide origin and function as immunomodulators, have been shown to stimulate macrophages in vivo by interaction with the mannose receptor. Thus, they can be… Click to show full abstract

Mannans, which are biological macromolecules of polysaccharide origin and function as immunomodulators, have been shown to stimulate macrophages in vivo by interaction with the mannose receptor. Thus, they can be used to stimulate macrophages in order to effectively remove circulating atherogenic lipoproteins. Our primary aim was to evaluate the hypolipidemic potential of mannans from C. albicans serotype A (mannan A) and serotype B (mannan B) in a murine model of hyperlipidemia. Mannan A and mannan B were shown to significantly (p<0.05) stimulate both the proliferation (p <0.05) and nitric oxide production of murine peritoneal macrophages in vitro. Pre-treatment of CBA/Lac mice with mannan A prior to induction of hyperlipidemia significantly (p<0.001) reduced serum atherogenic LDL-cholesterol, total cholesterol, and triglycerides. Mannan B exhibited a similar, but more potent, hypolipidemic effect. Electron microscopic analysis of liver revealed a significant (p<0.001) decrease in the volume of lipid droplets when hyperlipidemic mice were pretreated by both mannans. In conclusion, our findings would suggest that both polysaccharide-based biological macromolecules evaluated in the present study, specifically, the natural immunomodulators (mannans A and B), appeared to function as effective lipid-lowering macromolecules, which could potentially serve as adjunct therapy to more conventional hypolipidemic medications such as a statin drug.

Keywords: hypolipidemic effect; hyperlipidemia; mannan; mannans albicans; mice

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.