LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biochemical properties of the HtrA homolog from bacterium Stenotrophomonas maltophilia.

Photo from archive.org

The HtrA proteins due to their proteolytic, and in many cases chaperone activity, efficiently counteract consequences of stressful conditions. In the environmental bacterium and nosocomial pathogen Stenotrophomonas maltophilia HtrA (HtrASm)… Click to show full abstract

The HtrA proteins due to their proteolytic, and in many cases chaperone activity, efficiently counteract consequences of stressful conditions. In the environmental bacterium and nosocomial pathogen Stenotrophomonas maltophilia HtrA (HtrASm) is induced as a part of adaptive response to host temperature (37°C). We examined the biochemical properties of HtrASm and compared them with those of model HtrAEc from Escherichia coli. We found that HtrASm is a protease and chaperone that operates over a wide range of pH and is highly active at temperatures between 35 and 37°C. The temperature-sensitive activity corresponded well with the lower thermal stability of the protein and weaker stability of the oligomer. Interestingly, the enzyme shows slightly different substrate cleavage specificity when compared to other bacterial HtrAs. A computational model of the three-dimensional structure of HtrASm indicates differences in the S1 substrate specificity pocket and suggests weaker inter-trimer interactions when compared to HtrAEc. The observed features of HtrASm suggest that this protein may play a protective role under stressful conditions acting both as a protease and a chaperone. The optimal temperatures for the protein activity may reflect the evolutionary adaptation of S. maltophilia to life in soil or aqueous environments, where the temperatures are usually much below 37°C.

Keywords: properties htra; htra homolog; biochemical properties; stenotrophomonas maltophilia; homolog bacterium

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.