LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets.

Photo by ofisia from unsplash

In this study, we have reported the synthesis of graphene oxide nanosheets (GON) and its functionalization with 2, 4, 6-trichloro-1, 3, 5-triazine (TCT) through two routes, (a) directly reaction of… Click to show full abstract

In this study, we have reported the synthesis of graphene oxide nanosheets (GON) and its functionalization with 2, 4, 6-trichloro-1, 3, 5-triazine (TCT) through two routes, (a) directly reaction of GON with TCT (GON-1), and (b) reaction of GON with pre-functionalized TCT with 3-aminopropyltriethoxysilane (APTS) (GON-2). Subsequently, GON, GON-1 and GON-2 have been used as supports for immobilization of Candida rugosa lipase (CRL). Several techniques such as XRD, SEM, EDS, UV-Vis, CHNS, FTIR and AFM were applied to characterize the nano-structures and success of synthesis, functionalization and CRL immobilization processes. The results corresponding to optimization of immobilization process revealed the following order for values of loading capacity, immobilization yield and leaching of CRL: GON > GON-1 > GON-2, while this order is reversed for, specific activity and recovery activity. The assessment of operational parameters represents the high storage stability and reasonable reusability for all the immobilized CRL while the pH and thermal stability of CRL@GON-2 are higher than two others. It seems the longer linker of GON-2 could more effectively prevent the unfavorable interaction between enzyme-enzyme and enzyme-product that consequently resulted the best catalytic performance, pH and thermal stability. The advantages of these supports make them suitable candidates for practical applications.

Keywords: graphene oxide; gon gon; candida rugosa; oxide nanosheets; rugosa lipase; gon

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.