LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents.

Photo from wikipedia

Polo-like kinase-1 (PLK-1) plays a key role in cell cycle progression during mitosis. Overexpression/dysfunction of PLK-1 is directly associated with cancerous transformation and has been reported in different cancer types.… Click to show full abstract

Polo-like kinase-1 (PLK-1) plays a key role in cell cycle progression during mitosis. Overexpression/dysfunction of PLK-1 is directly associated with cancerous transformation and has been reported in different cancer types. Here, we employed high throughput virtual screening and molecular docking to screen Selleck's natural compound library against PLK-1 kinase domain. We have identified eight bioactive compounds (Apigenin, Dihydromyricetin, Diosmetin, Hesperidin, Hesperitin, Naringenin, Phlorizi, and Quercetin) as the potential inhibitors of PLK-1. Further investigation through Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations and 15 ns molecular dynamics simulation revealed that hesperidin formed the most stable complex with PLK-1 kinase domain. Altogether, our results indicate that hesperidin interacted strongly with the key residues of the PLK-1 active site (such as Leu59, Lys61, Lys82, Cys133, Asn181, Asp194, Leu59, Cys67, Ala80, Val114, Leu130, Leu132, Cys133, Leu139, Phe183, and Phe195) through hydrogen bonding and hydrophobic interactions. The Hesperidin-PLK-1 complex was stabilized by Gibb's free energy of -13.235 kcal/mol which corresponded to the binding affinity of 5.095 × 109 M-1. This is the first study wherein hesperidin has been identified as a potential inhibitor of PLK-1. Further design and optimization of the hesperidin scaffold as an inhibitor of PLK-1 kinase domain is highly recommended.

Keywords: like kinase; kinase; polo like; hesperidin; cancer; plk

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.