LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis.

The hydrolysis of the plant biomass provides many interesting opportunities for the generation of building blocks for the green chemistry industrial applications. An important progress has been made for the… Click to show full abstract

The hydrolysis of the plant biomass provides many interesting opportunities for the generation of building blocks for the green chemistry industrial applications. An important progress has been made for the hydrolysis of the cellulosic component of the biomass while, for the hemicellulosic components, the advances are less straightforward. Here, we describe the cloning, expression and biochemical and structural characterization of BlAbn1, a GH43 arabinanase from Bacillus licheniformis. This enzyme is selective for linear arabinan and efficiently hydrolyzes this substrate, with a specific activity of 127 U/mg. The enzyme has optimal conditions for activity at pH 8.0 and 45 °C and its activity is only partially dependent of a bound calcium ion since 70% of the maximal activity is preserved even when 1 mM EDTA is added to the reaction medium. BlAbn1 crystal structure revealed a typical GH43 fold and narrow active site, which explains the selectivity for linear substrates. Unexpectedly, the enzyme showed a synergic effect with the commercial cocktail Accellerase 1500 on cellulose hydrolysis. Scanning Electron Microscopy, Solid-State NMR and relaxometry data indicate that the enzyme weakens the interaction between cellulose fibers in filter paper, thus providing an increased access to the cellulases of the cocktail.

Keywords: arabinanase bacillus; gh43; bacillus licheniformis; hydrolysis; activity

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.