LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antibacterial hop extracts encapsulated in nanochitosan matrices.

Photo from archive.org

Hops and the components extracted from them are well known antibacterial agents used in beers and as food preservatives, in formulations for topical applications on their own or together with… Click to show full abstract

Hops and the components extracted from them are well known antibacterial agents used in beers and as food preservatives, in formulations for topical applications on their own or together with other antimicrobial agents, in hormone replacement therapy, as antioxidants, tumor development antagonists, and angiogenesis inhibitors. Their shortcomings: very low bioavailability, bitter taste, and susceptibility to oxidative decomposition have limited their applications. We propose nanosized chitosan, an inexpensive, readily available biopolymer with a broad spectrum of antibacterial activity, as carrier for lupulone (L) and xanthohumol (X), two components of hops. Chitosan nanoparticles (CNP) and chitosan-based nanocomposites encapsulating lupulone (CNL) and xanthohumol (CNX) were prepared by ionotropic gelation using sodium tripolyphosphate (TPP) as crosslinker. Different preparative ratios and conditions were investigated and the nanoparticles obtained were characterized by FTIR, colloidal titration, size, zeta potential, and antimicrobial activity. The kinetics of the release of L/X from composites was studied in vitro. All the nanoparticles were active against several Gram-positive, Gram-negative, and Candida strains. Synergistic interactions were observed in all cases, although hops are known mainly for their activity against Gram-positive bacteria. All nanoparticles showed good stability over several months.

Keywords: antibacterial hop; nanochitosan matrices; hop extracts; extracts encapsulated; encapsulated nanochitosan; activity

Journal Title: International journal of biological macromolecules
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.