LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

α-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes.

Photo from wikipedia

Myocardial infarction (MI) continues to be a major contributor to the morbidity and mortality across the globe. Injectable hydrogel, a tissue-engineered scaffold, recently demonstrated very promising in myocardial repair. However,… Click to show full abstract

Myocardial infarction (MI) continues to be a major contributor to the morbidity and mortality across the globe. Injectable hydrogel, a tissue-engineered scaffold, recently demonstrated very promising in myocardial repair. However, the undesirable retention and survival of transplanted cells has limited their applications due to the oxidative stress microenvironment of MI lesions. In this work, a thermosensitive α-tocopherol (AT) liposome loaded chitosan hydrogel was developed to suppress the oxidative stress injury in cardiomyocytes. AT was embedded in the liposomes to improve its solubility and stability. The innovative AT liposome loaded chitosan hydrogel (AT-LCH) system had an appropriate sol-to-gel transition temperature. Hydrogels possessed a highly porous structure with irregular pores interconnected throughout the construct as shown by SEM, and liposomes distributed uniformly in the porous structure. A sustained AT release was observed in AT-LCH. In addition, AT-LCH has shown an excellent biocompatibility to support the adhesion and survival of cardiomyocytes. Moreover, it can resist the oxidative stress environment and improve the survival of cardiomyocytes. In general, this work suggests that AT-LCH may present an ideal scaffold material for injectable cardiac tissue engineering.

Keywords: loaded chitosan; hydrogel; chitosan hydrogel; liposome loaded; oxidative stress

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.