LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physical and rheological properties of xanthan gum agglomerated in fluidized bed: Effect of HPMC as a binder.

Physical and rheological properties of agglomerated xanthan gum (XG), commonly used as a food thickener for the management of the patients with dysphagia (swallowing difficulty), were investigated at different concentrations… Click to show full abstract

Physical and rheological properties of agglomerated xanthan gum (XG), commonly used as a food thickener for the management of the patients with dysphagia (swallowing difficulty), were investigated at different concentrations (0, 2, 4, and 6% w/w) of hydroxypropyl methylcellulose (HPMC) as a binder in the fluidized bed agglomeration process. Flow characteristics of agglomerated XG powder were evaluated using Carr index (CI) and Hausner ratio (HR). The agglomerated XG powders obtained by HPMC binder exhibited a better flowability and higher porosity than the agglomerated powder without binder due to the size enlargement of XG powder. Dynamic moduli (G' and G") of agglomerated XG powders at 2% and 4% HPMC were significantly higher than those of other powders. The tan δ values of agglomerated powders with HPMC binder were much lower than that of an agglomerated powder without HPMC, indicating that their elastic properties were enhanced because of the addition of HPMC binder. Results suggest that the use of HPMC in agglomeration process could considerably enhance the flow characteristics and rheological properties of XG powder.

Keywords: hpmc binder; rheological properties; physical rheological; xanthan gum; binder

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.