LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L.

Photo from wikipedia

The worldwide rice production has been dwindling due to biotic and abiotic causes. Chitosan is a proven biofunctional material that induces many biological responses in plants. However, the growth and… Click to show full abstract

The worldwide rice production has been dwindling due to biotic and abiotic causes. Chitosan is a proven biofunctional material that induces many biological responses in plants. However, the growth and yield increasing properties of chitosan nanoparticles (ChNP) on rice crop are not well understood. In the present work, effect of ChNP on germination of rice has been studied. Seed toxicity of ChNP was also analyzed to ensure the safety of ChNP application. The toxicity study was done according to EPA guidelines and ChNP was found to be non-toxic. Rice seeds were treated with ChNP at different concentrations for different time periods and kept for germination. Upon complete germination, the seedlings were sown in seed trays and growth was evaluated at 21 days after sowing. All treatments showed better results than the untreated control. Treatment T22 (1 mg/ml ChNP for 120 mins) gave the highest growth rates. Therefore we could deduce that ability of ChNP to elicit growth was associated with the concentration of ChNP and soaking time. The shelf life of ChNP was studied over a period of one year by analyzing the germination eliciting capacity on rice seeds. ChNP was found to effective for seven months when stored under room temperature.

Keywords: seed; rice; germination; application; chnp; growth

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.