In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response… Click to show full abstract
In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both increasing chit/col weight ratio and A-PRF concentration. Moreover, as chit/col weight ratio increased from 0 to 4 and A-PRF concentration decreased from 5 to 0, degradation rate of the membranes decreased from 90 to 20% after four weeks incubation. Finally, based on Design Expert Software calculation for minimizing the degradation rate and maximizing both Young's modulus and cell viability, the values of chit/col weight ratio and A-PRF concentration were suggested to be 4 and 0.58 mg/ml, respectively. Alkaline phosphatase (ALP) activity analysis showed that the addition of A-PRF caused higher osteogenic differentiation.
               
Click one of the above tabs to view related content.