LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin.

Photo from wikipedia

The aim of this work was to examine the formation and properties of a novel polyelectrolyte complex of drug carrier system for the delivery of doxorubicin (DOX), which consists of… Click to show full abstract

The aim of this work was to examine the formation and properties of a novel polyelectrolyte complex of drug carrier system for the delivery of doxorubicin (DOX), which consists of hyaluronic acid (HA) coated hydrophobically modified chitosan (CS). Various batches of polyelectrolyte complexes with the molar ratio of deoxycholic acid (DCA) and chitosan (CS) of 0.1, 0.2, 0.3 were prepared, and were termed as CS-DCA10, CS-DCA20, and CS-DCA30 respectively. The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), nuclear magnetic resonance hydrogen spectrum (1H NMR) and dynamic light scattering (DLS). Particle sizes of synthesized polyelectrolyte complex nanoparticles (PCNs) were found to be in the range of 280-310 nm, larger than those of uncoated nanoparticles (~150 nm). The PCNs have large zeta potentials (about 26 mV) which make them stable and no sizes' change was determined. DOX could be easily incorporated into the PCNs with encapsulation efficiency (56%) and kept a sustained release manner without burst effect when exposed to PBS (pH 7.4) at 37 °C. Overall, these findings confirmed the potential of these PCNs for drug carrier and prolonged and sustained delivery in the bloodstream.

Keywords: polyelectrolyte complex; delivery doxorubicin; hyaluronic acid; polyelectrolyte

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.