LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inner membrane complex 1l protein of Plasmodium falciparum links membrane lipids with cytoskeletal element 'actin' and its associated motor 'myosin'.

Photo from wikipedia

The inner membrane complex (IMC) is a defining feature of apicomplexans comprising of lipid and protein components involved in gliding motility and host cell invasion. Motility of Plasmodium parasites is… Click to show full abstract

The inner membrane complex (IMC) is a defining feature of apicomplexans comprising of lipid and protein components involved in gliding motility and host cell invasion. Motility of Plasmodium parasites is accomplished by an actin and myosin based glideosome machinery situated between the parasite plasma membrane (PPM) and IMC. Here, we have studied in vivo expression and localization of a Plasmodium falciparum (Pf) IMC protein 'PfIMC1l' and characterized it functionally by using biochemical assays. We have identified cytoskeletal protein 'actin' and motor protein 'myosin' as novel binding partners of PfIMC1l, alongside its interaction with the lipids 'cholesterol' and 'phosphatidyl-inositol 4, 5 bisphosphate' (PIP2). While actin and myosin compete for interaction with PfIMC1l, actin and either of the lipids (cholesterol or PIP2) simultaneously bind PfIMC1l. Interestingly, PfIMC1l showed enhanced binding with actin in the presence of calcium ions, and displayed direct binding with calcium. Based on our in silico analysis and experimental data showing PfIMC1l-actin/myosin and PfIMC1l-lipid interactions, we propose that this protein may anchor the IMC membrane with the parasite gliding apparatus. Considering its binding with key proteins involved in motility viz. myosin and actin (with calcium dependence), we suggest that PfIMC1l may have a role in the locomotion of Plasmodium.

Keywords: inner membrane; protein; myosin; actin; plasmodium

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.