LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amination of biorefinery technical lignin by Mannich reaction for preparing highly efficient nitrogen fertilizer.

Photo from wikipedia

To develop a novel lignin-based highly efficient nitrogen fertilizer, the amination of the biorefinery technical lignin was conducted by Mannich reaction synergy with phenolation pretreatment. Subsequently, the structural transformations of… Click to show full abstract

To develop a novel lignin-based highly efficient nitrogen fertilizer, the amination of the biorefinery technical lignin was conducted by Mannich reaction synergy with phenolation pretreatment. Subsequently, the structural transformations of lignin samples and the reaction mechanism were investigated in detail. The soil column leaching experiment was also performed to research the nitrogen release behavior of aminated lignin in soil. The results indicated that the amounts of active sites in lignin were significantly increased to 8.26 mmol/g from the original 2.91 mmol/g by phenolation. In addition, the Mannich reaction was highly selective for occurring at ortho- and para-positions of phenolic hydroxyl groups in the phenolated lignin, in which the latter was favored. Moreover, the nitrogen content in the aminated lignin was highly depended on the types of amination reagent instead of the proportion of reactants in this study. Under an optimal condition, aminated lignin with a high nitrogen content (10.13%) and low C/N ratio (6.08) could be obtained. Besides, it was especially noteworthy that the prepared APL in this study has a favorable nitrogen release behavior in soil. Thus, it is believed that these aminated lignin derivatives could be used for the preparation of various lignin-based highly efficient nitrogen fertilizer.

Keywords: nitrogen; highly efficient; mannich reaction; efficient nitrogen; reaction; nitrogen fertilizer

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.