LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified chitosan gel incorporated with magnetic nanoparticle for removal of Cu(II) and Cr(VI) from aqueous solution.

Photo by towfiqu999999 from unsplash

A novel adsorbent material for removal of metal ion from aqueous solution was made by modification of chitosan. Schiff base prepared from reaction of chitosan with 3-methyl-1-phenyl-5-(piperidin-1-yl)-1H-pyrazole-4-carbaldehyde was crosslinked with… Click to show full abstract

A novel adsorbent material for removal of metal ion from aqueous solution was made by modification of chitosan. Schiff base prepared from reaction of chitosan with 3-methyl-1-phenyl-5-(piperidin-1-yl)-1H-pyrazole-4-carbaldehyde was crosslinked with epichlorohydrin to form a crosslinked gel. Fe3O4 nanoparticles were incorporated into the modified chitosan gel to obtain a magnetic adsorbent material. The magnetic nanocomposite thus obtained was characterized using FTIR, TGA, SEM, EDS and XRD techniques and evaluated for adsorptive removal of Cu(II) and Cr(VI) ions from aqueous solutions. The maximum adsorption capacity of the adsorbent for Cu(II) and Cr(VI) ions was found to be 90.90 and 83.33 mg g-1 respectively. The adsorption data fitted well with Langmuir isotherm model and the pseudo-second order kinetic model. Thermodynamic parameters indicated the adsorption to be spontaneous and endothermic. The desorption studies revealed the efficient recovery of adsorbate species and possible reusability of the adsorbent material.

Keywords: removal; modified chitosan; chitosan gel; aqueous solution

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.