Magnetic nanoparticles coated with polymer shell containing reactive functional groups are of great interest especially as substrates for immobilization of ligands in biomedicine and catalysis. This article describes synthesis of… Click to show full abstract
Magnetic nanoparticles coated with polymer shell containing reactive functional groups are of great interest especially as substrates for immobilization of ligands in biomedicine and catalysis. This article describes synthesis of novel functional MNPs coated with aminated starch via simple, fast and efficient method of functionalization of the surface by one-minute pounding in mortar. The concept is based on simplifying the synthesis of the magnetic support and obtaining a material that allows for effective bioligand immobilization. Basing on our previous research in the area of MNPs synthesis and biomedical applications, the high yield (149.96 mg/g of support) and effective immobilization of HSA was demonstrated for these nanoparticles without loss of protein activity. Obtained materials were characterized with ATR-FTIR spectroscopy, scanning (SEM) and transmission (TEM) electron microscopy, dynamic light scattering (DLS), X-ray diffraction, TGA-DTA and SQUID analysis. The developed method allows for modification of polysaccharides and nanoparticles towards materials enriched with amino groups in a quick and easy way. It can be expected that this method of quick solvent-free amination will find application in the chemistry of materials and polymers. In addition, the new obtained amino-rich MNPs may find use as carriers for the immobilization of bioligands in catalysis and pharmaceutical analysis.
               
Click one of the above tabs to view related content.