LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid.

Photo by xoforoct from unsplash

The objective of this study was to develop zein-casein-lysine nanoparticles to modulate the intestinal permeability of ferulic acid (FA), a bioactive compound with proven antioxidant properties. The nanoparticles were obtained… Click to show full abstract

The objective of this study was to develop zein-casein-lysine nanoparticles to modulate the intestinal permeability of ferulic acid (FA), a bioactive compound with proven antioxidant properties. The nanoparticles were obtained by a liquid-liquid dispersion method and were characterized in terms of mean size, polydispersity index, zeta potential, association efficiency (AE), in vitro drug release, x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The in vitro intestinal permeability of nanoparticles was evaluated through Caco-2 and Caco-2/HT29-MTX monoculture and co-culture models, respectively. Nanoparticles presented a mean size of 199 nm and zeta potential of -26 mV. The AE of FA was 23% evaluated by high-performance liquid chromatography (HPLC). XRD showed amorphization of FA after association and FT-IR showed no changes in chemical structures of the compounds after nanoencapsulation. The cytotoxicity assays demonstrated that multicomposite nanoparticles presented a safe profile against Caco-2 and HT29-MTX cells. In the in vitro permeability assay, free FA exhibited higher permeability compared to FA-loaded nanoparticles, possibly due to prolonged FA release from nanoparticles. These new developed zein-casein-lysine nanoparticles may be used for FA sustained delivery by the oral route.

Keywords: casein lysine; modulate intestinal; permeability ferulic; intestinal permeability; permeability; zein casein

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.