LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane.

Photo by thkelley from unsplash

Nanofibrillated cellulose (NFC) as a natural macromolecule, binder, dispersant, enhancer, was utilized to facilitate the assembly of graphene sheets, imparting a steady stacked structure by the sheets to the electric… Click to show full abstract

Nanofibrillated cellulose (NFC) as a natural macromolecule, binder, dispersant, enhancer, was utilized to facilitate the assembly of graphene sheets, imparting a steady stacked structure by the sheets to the electric heating membrane with flexibility and uniform heating performance. Strong interface bonding formed in the membrane, which combined graphene sheets to be a steady conductive network structure for electric heating. The membrane attained an equilibrium temperature rise to 60 °C in 3 min under 2000 W m-2, which increased linearly with increasing power density and graphene content. Decreased resistance between two electrodes was caused by electric-heat coupling effect which led to a decrease in the membrane's oxygen-containing groups as conducting electrification. The temperature distributing on membrane surface, and that as bended and distorted to different angles even simultaneously at the electric heating status, were all characterized by infrared thermal imaging to indicate the uniform distribution and well bonding performance between NFC and graphene, as well as the great flexibility in the biomass membrane. This study would further broaden the utilization of the natural nanocellulose-graphene biomass composites.

Keywords: nanofibrillated cellulose; graphene; electric heating; heating membrane; membrane

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.