LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems.

Photo from wikipedia

This work developed one promising adsorbent based on chitosan hydrogel scaffold modified with carbon nanotubes, for food dye removal in single and binary aqueous systems. The modified hydrogel scaffold was… Click to show full abstract

This work developed one promising adsorbent based on chitosan hydrogel scaffold modified with carbon nanotubes, for food dye removal in single and binary aqueous systems. The modified hydrogel scaffold was characterized in relation to the gel strength, swelling degree, surface attributes, and infrared spectrum. Adsorption isotherms were performed using dyes, food red 17 (FdR17) and food blue 1 (FdB1), in single and binary aqueous systems. The experimental data were adjusted to the Langmuir model and the thermodynamic parameters were estimated. The kinetic behavior was evaluated and, desorption studies were performed to verify the reuse capacity of the modified hydrogel scaffold. The results showed that maximum adsorption capacities were ​​of 1508 and 1480 mg g-1 for the single system and of 955 and 902 mg g-1 for the binary system, for FdB1 and FbR17, respectively. The thermodynamic parameters indicated that the adsorption was the spontaneous, exothermic and favorable process. The model that best represented the kinetic data was that of Avrami. In desorption, the adsorbent can be used until four times and maintaining the adsorption capacity of the adsorbent in 71% of the initial capacity.

Keywords: single binary; hydrogel scaffold; aqueous systems; binary aqueous; chitosan hydrogel; food

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.