LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Native bovine hemoglobin reduces differentiation capacity of mesenchymal stromal cells in vitro.

Photo by nci from unsplash

We have tested in vitro effects of hemoglobin from bovine slaughterhouse blood (BHb) on stromal cells of mesodermal origin, with an aim to explore its use as a component of… Click to show full abstract

We have tested in vitro effects of hemoglobin from bovine slaughterhouse blood (BHb) on stromal cells of mesodermal origin, with an aim to explore its use as a component of cell culture media. Human peripheral blood mesenchymal stromal cells (PB-MSCs) and three mouse cell lines (ATDC5, MC3T3-E1 and 3T3-L1) were employed to study BHb effects on their growth and migration. The cells multilineage differentiation capacity in the presence of BHb was evaluated after induced differentiation, by histochemical staining and by RT-PCR analysis of the expression of genes specific for chondrogenic, adipogenic and osteogenic lineages. The effects of BHb on the cell proliferation and motility were dependent on both, cell type and BHb concentration (0.1 μM, 1 μM and 10 μM). In the lowest concentration (0.1 µM) BHb showed the least prominent effect on the cell proliferation and migration. In this concentration BHb reduced the differentiation capacity of all tested cells and its effect was dependent of composition of induction medium and the culture period. Obtained data suggest that BHb has the potential to be used as a component of cell culture media through maintaining proliferation and reducing differentiation capacity of mesenchymal stromal cells.

Keywords: stromal cells; bhb; differentiation; differentiation capacity; cell

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.