LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation and characterization of Populus xyloglucan endotransglycosylase/hydrolase (XTH) involved in osmotic stress responses.

Photo by kellysikkema from unsplash

Xyloglucan endotransglycosylase/hydrolase (XTH) belongs to the GH16 subfamily of the glycoside hydrolases of carbohydrate active enzymes and plays an important role in the structure and function of plant cell walls.… Click to show full abstract

Xyloglucan endotransglycosylase/hydrolase (XTH) belongs to the GH16 subfamily of the glycoside hydrolases of carbohydrate active enzymes and plays an important role in the structure and function of plant cell walls. In this study, 11 members of the XTH gene family were cloned from Populus tomentosa. A bioinformatics analysis revealed that 11 PtoXTHs could be classified into three groups, where PtoXTH27 and PtoXTH34 were most likely to exhibit XTH activity. Biochemical analyses of purified PtoXTHs demonstrated that PtoXTH27 and PtoXTH34 had detectable xyloglucan endotransglucosylase (XET) activity, while the others did not exhibit XET or XEH activity. Moreover, enzymatic assays revealed that the optimum reaction temperature of both PtoXTH27 and PtoXTH34 was 37 °C, while their optimum pH values differed, such that PtoXTH27 was 6.0 and PtoXTH34 was 5.0. Enzyme kinetic parameters indicated that PtoXTH34 had higher affinity for the receptor substrate, XXXG, implying that PtoXTH34 and PtoXTH27 in plants have different substrate structure specificity. Finally, heterologous expression of XTH significantly increased intracellular total sugar content and osmotolerance of yeast cells, indicating that PtoXTH27 and PtoXTH34 are potentially involved in osmotic stress responses. These results clearly demonstrate the enzymatic characteristics and putative role of XTH in osmotic stress responses.

Keywords: ptoxth27 ptoxth34; osmotic stress; stress responses; xth

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.