LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stress response and silencing verification of heat shock proteins in Dermatophagoides farinae under temperature stress.

Photo by kellysikkema from unsplash

Dermatophagoides farinae is a major exogenous allergen. Its ability to tolerate adverse external temperatures makes it responsible for widespread occurrence of allergies. Heat shock protein (HSP), a recognized temperature stress… Click to show full abstract

Dermatophagoides farinae is a major exogenous allergen. Its ability to tolerate adverse external temperatures makes it responsible for widespread occurrence of allergies. Heat shock protein (HSP), a recognized temperature stress response gene, but its role in D. farinae remained unclear. Here, we performed a comprehensive study. First, we found that 25 °C was the optimal temperature, and all mites died at 48 or -20 °C for 1 h (LT100). Thus, 41 °C (LT15), 43 °C (LT25), 45 °C (LT45), and -10 °C (LT25) were selected as stress temperatures to perform de novo RNA-seq. Then, 17 main genes of the 47 differentially expressed HSP, were detected by qRT-PCR. Temperature and time gradient versus expression magnitude histogram revealed that HSP70, HSP83-1, HSP83-2, and HSP16-1 showed heat stress response only at 41-43 °C, while HSC71 and HSF played a regulatory role under both heat and cold stress, particularly HSF, with strong intensity, long duration, and quick upregulation at recovery for 10-20 min. Finally, gene expression and D. farinae survival rates significantly decreased following RNAi. These findings indicated that HSPs conferred thermo-tolerance or cold-tolerance to D. farinae. In conclusion, this was the first meaningful exploration that confirmed HSP and HSF playing an important role in temperature resistance of D. farinae.

Keywords: temperature; dermatophagoides farinae; stress; stress response; heat

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.