LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives.

Photo by andreacaramello from unsplash

In this research, for the first time, novel magnetic chitosan-terephthaloyl-creatine bionanocomposite was successfully designed and synthesized. For this purpose, chitosan bio-polymeric chains were functionalized by synthetic creatine-terephthaloyl chloride ligands. Then,… Click to show full abstract

In this research, for the first time, novel magnetic chitosan-terephthaloyl-creatine bionanocomposite was successfully designed and synthesized. For this purpose, chitosan bio-polymeric chains were functionalized by synthetic creatine-terephthaloyl chloride ligands. Then, the functionalized polymeric substrate was magnetized by in-situ preparation of Fe3O4 magnetic nanoparticles. The characterization of the magnetic bionanocomposite was well accomplished by various spectral and analytical techniques such as FT-IR, EDX, FE-SEM, TEM, XRD, TGA and VSM analysis. Apart from characterizing its specific and unique features, the catalytic efficiency and performance of this new magnetic bionanocomposite were evaluated in symmetric and unsymmetrical Hantzsch condensation reactions. In comparison of conventional catalysts and previous studies, this heterogeneous nanocatalyst with high potential magnetic property and eco-friendly nature can be efficiently applied for one-pot synthesis of polyhydroquinoline, 1,4-dyhdropyridine and 1,8-dioxo-decahydroacridine derivatives in high yields of the product within short reaction times in accordance with green chemistry principals.

Keywords: creatine; synthesis polyhydroquinoline; novel magnetic; magnetic bionanocomposite; polyhydroquinoline dyhdropyridine; dyhdropyridine dioxo

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.