LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and characterization of zein/lactoferrin composite nanoparticles for encapsulating 7,8-dihydroxyflavone: Enhancement of stability, water solubility and bioaccessibility.

Photo by mezidi_zineb from unsplash

7,8-dihydroxyflavone (7,8-DHF), a tyrosine kinase B (TrkB) receptor agonist, can mimick physiological actions of brain-derived neurotrophic factor (BDNF) to attenuate neurogenic disease. However, its use as a functional food, is… Click to show full abstract

7,8-dihydroxyflavone (7,8-DHF), a tyrosine kinase B (TrkB) receptor agonist, can mimick physiological actions of brain-derived neurotrophic factor (BDNF) to attenuate neurogenic disease. However, its use as a functional food, is limited by its low-water solubility, chemical instability, and poor bioavailability. The purpose of this work is to fabricate stable 7,8-DHF loaded zein/lactoferrin (LF) composite nanoparticles (zein/LF-DHF) to overcome these challenges. Results showed that mean particle size of zein/LF nanoparticles was about 74 nm with low polydispersity index (<0.200) and turbidity (<0.300) values. Zein/LF nanoparticles had good stability against pH (3.0-9.0), ionic strengths (0-500 mM NaCl at neutral pH) and long-term storage. Zein/LF nanoparticles showed spherical structures formed by hydrogen bonding and hydrophobic interactions, however, LF changed surface morphology of zein nanoparticles as observed by scanning electron microscope. X-ray diffraction indicated 7,8-DHF was presented in an amorphous state inside zein/LF nanoparticles. Most importantly, zein/LF-DHF had good redispersibility, and increased the encapsulation efficiency, chemical stability, water solubility and bioaccessibility of 7,8-DHF. Collectively, zein/LF nanoparticles are promising delivery systems for 7,8-DHF in functional foods.

Keywords: zein; stability; zein nanoparticles; water solubility

Journal Title: International journal of biological macromolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.