LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite for the removal of anionic azo dye: An optimized process.

Photo by zibik from unsplash

In this study, a new magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite (Chi-Gly/FA/Fe3O4) was successfully synthesized by direct compositing of magnetic chitosan (Chi) with fly ash (FA) powder particles, and followed by… Click to show full abstract

In this study, a new magnetic Schiff's base-chitosan-glyoxal/fly ash/Fe3O4 biocomposite (Chi-Gly/FA/Fe3O4) was successfully synthesized by direct compositing of magnetic chitosan (Chi) with fly ash (FA) powder particles, and followed by Schiff's base formation via cross-linking reaction with glyoxal (Gly). Various techniques such as BET, XRD, FTIR, and SEM-EDX were utilized to characterize of Chi-Gly/FA/Fe3O4 biocomposite. The effectiveness of Chi-Gly/FA/Fe3O4 as an adsorbent was evaluated for the removal anionic azo dye such as reactive orange 16 (RO16) from aqueous environment. The effect of adsorption process parameters namely adsorbent dose (A: 0.02-0.1 g), pH (B: 4-10), temperature (C: 30-50 °C), and contact time (D: 5-20 min) were optimized via Box-Behnken design (BBD) in response surface methodology (RSM). The adsorption process followed the pseudo-second order (PSO) kinetic, and Freundlich isotherm models. The maximum adsorption capacity of Chi-Gly/FA/Fe3O4 biocomposite for RO16 dye was recorded to be 112.5 mg/g at 40 °C. The RO16 dye adsorption mechanism was attributed to various interactions such as electrostatic, n-π, H-bonding, and Yoshida H-bonding. Furthermore, the Chi-Gly/FA/Fe3O4 biocomposite exhibited a high ability to separate from the aqueous solution after adsorption process by external magnetic field.

Keywords: chi gly; fe3o4 biocomposite; biocomposite; dye; fly ash; schiff base

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.