LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen.

Photo by roanlavery from unsplash

Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation… Click to show full abstract

Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.

Keywords: collagen; effects phosphate; phosphate ion; concentration; type collagen

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.