LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A nonadherent chitosan-polyvinyl alcohol absorbent wound dressing prepared via controlled freeze-dry technology.

Photo from wikipedia

In modern-day 21st century, the demand has increased for absorbent dressings that are nonadherent and maintain structural integrity without shedding lint in the wound site. This study looks at the… Click to show full abstract

In modern-day 21st century, the demand has increased for absorbent dressings that are nonadherent and maintain structural integrity without shedding lint in the wound site. This study looks at the development of a blend of polysaccharide chitosan and polyvinyl alcohol (PVA) and its fabrication using a novel controlled freeze-drying process, thus giving it channeled pores. The dressing was assessed for in vitro physical properties such as fluid handling, mechanical integrity, bioadhesion, and blood clotting. Additionally, cytocompatibility and hemocompatibility tests were conducted. An in vitro wound-healing assay was performed to determine the healing response. Furthermore, toxicological safety evaluation tests such as acute systemic toxicity, skin irritation, and sensitization were conducted. The results revealed that the developed dressing was biocompatible with a good absorbency rate of 0.63 ± 0.13 g/cm2, enhanced mechanical integrity, and low bioadhesive strength with good healing characteristics and nontoxic nature, which indicated that it was an ideal nonadherent absorbent wound dressing.

Keywords: wound dressing; absorbent wound; chitosan polyvinyl; polyvinyl alcohol; controlled freeze

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.