Thermostable β-galactosidase (TmLac) has been immobilized as hybrid inorganic-protein nanoflowers using salts of Cu2+, Mn2+, Zn2+, Co2+ and Ca2+ as the inorganic component. The incorporation efficiency of enzyme into the… Click to show full abstract
Thermostable β-galactosidase (TmLac) has been immobilized as hybrid inorganic-protein nanoflowers using salts of Cu2+, Mn2+, Zn2+, Co2+ and Ca2+ as the inorganic component. The incorporation efficiency of enzyme into the nanoflowers was higher than 95% for a protein concentration of 0.05 mg/mL. The structure, activity and recyclability of the nanoflowers with different chemical composition were analyzed. Ca2+, Mn2+ and Co2+ nanoflowers showed a level of lactase activity equivalent to their same content of free enzyme. Cu2+nanoflowers showed only marginal enzyme activity in agreement with the inhibitory effect of this cation on the enzyme. TmLac nanoflowers provide an efficient methodology for enzyme immobilization and recyclability. TmLac-Ca2+ nanoflowers presented the best properties for lactose hydrolysis both in buffered and in milk, and could be reused in five consecutive cycles.
               
Click one of the above tabs to view related content.