LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methylene blue adsorption on magnetic alginate/rice husk bio-composite.

Photo by milkbox from unsplash

Magnetic alginate/rice husk (m-ALG/RH) bio-composite beads prepared with ionotropic gelation method and used for methylene blue (MB) removal. Structural analysis of magnetic alginate/rice husk composite beads was performed using FTIR,… Click to show full abstract

Magnetic alginate/rice husk (m-ALG/RH) bio-composite beads prepared with ionotropic gelation method and used for methylene blue (MB) removal. Structural analysis of magnetic alginate/rice husk composite beads was performed using FTIR, SEM-EDS and TGA techniques. The accomplishment of magnetic alginate/rice husk composite beads as an adsorbent for the removal methylene blue was investigated from aqueous solution. Maximum experimental adsorption capacity of the bio-composite beads was calculated as 274.9 mg/g. The various process parameters such as pH, temperature and initial MB concentration optimized. It was determined that pH no significant effect on dye removal efficiency of beads while temperature and ionic strength caused a decrease on removal efficiency. The various isotherm models were applied for determine the adsorption mechanism and Freundlich isotherm model is more compatible with the experimental data. The kinetic studies showed that the adsorption of methylene blue can be well described by the fractal Brouers-Sotolongo kinetic model. The thermodynamic calculations indicated that methylene blue adsorption was a spontaneous and exothermic nature. The results showed that the magnetic alginate/rice husk bio-composite as low-cost and eco-friendly adsorbent can be effectively used for cationic dye removal steps in the environmental engineering applications.

Keywords: rice husk; alginate rice; magnetic alginate; methylene blue

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.