LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant.

Photo by bang_gecko from unsplash

In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence… Click to show full abstract

In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence of a reducing agent, all the catalysts revealed excellent catalytic efficiency in aqueous media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and degradation of cationic dyes methylene blue (MB) and rhodamine B (RB). Different order of equations were applied to determine the adjacent R2 value and rate constant. Adjacent R2 values for MB are 9.470, 9.422 and 9.050 and its kapp values per minutes are 1.7 × 10-1, 8.3 × 10-2, and 6. 7 × 10-1 with Ce/Zr@Cu0, CA@Cu0, and CA-Ce/Zr@Cu0 derived from the pseudo 1st order kinetics, while in the absence of catalyst the R2 and kapp for MB degradation in the presence of NaBH4 is 0.8643 and 3.4 × 10-3 respectively. Furthermore, regression models, ANOVA and correlation coefficients suggested that all the data are highly significant. The synthesized catalysts were applied for the simultaneous reduction/degradation of mixture of 4-NP-MB, 4-NP-RB and 4-NP-MB-RB mixture to check the practical applicability. Catalytic recyclability of CA-Ce/Zr@Cu0 catalyst dropped till 5th cycle which is due to the leaching of Cu0 NPs.

Keywords: degradation; acetate cu0; cu0; cu0 catalyst; cellulose acetate

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.