Here, we have identified a novel matrix protein, named PfX, from the pearl oyster Pinctada fucada, and investigated the effects of recombinant PfX protein on calcium carbonate crystallization. The expression… Click to show full abstract
Here, we have identified a novel matrix protein, named PfX, from the pearl oyster Pinctada fucada, and investigated the effects of recombinant PfX protein on calcium carbonate crystallization. The expression of PfX was spatially concentrated in the mantle tissue and gill, the former of which is responsible for the formation of shell structures. The shell notching assay showed a PfX expression response during injured shell repair and regeneration, suggesting the potential involvement of this matrix protein in shell biomineralization. Further, an in vitro crystallization assay showed that PfX could alter the CaCO3 morphologies of both calcite and aragonite polymorphs. Correspondingly, a binding assay indicated that PfX has strong binding affinity for CaCO3 crystals, especially aragonite. Further, the protein's calcite binding capacity increased obviously when particular crystal faces were induced. In addition, PfX conjugated with fluorescent dye cyanine-5 (cy5) was preferentially distributed on rough crystal faces instead of the smooth and common (1 0 4) faces of calcite during the crystallization. These results suggest that matrix protein PfX might regulate CaCO3 morphology via selective binding and inhibit the growth of certain crystal faces, providing new clues for understanding biomineralization mechanisms in mollusk.
               
Click one of the above tabs to view related content.