LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Different unfolding pathways of homologous alpha amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) in GdmCl and urea.

Photo by timaesthetic from unsplash

Understanding the factors governing stability of proteins is fundamentally and industrially important topic in protein science. Bacterial alpha amylases are industrially important enzymes which are involved in the breakage of… Click to show full abstract

Understanding the factors governing stability of proteins is fundamentally and industrially important topic in protein science. Bacterial alpha amylases are industrially important enzymes which are involved in the breakage of α-1, 4-glycosidic bonds in starch. Current study is focussed on elucidating the role of non-covalent interactions in the differential stability of alpha amylases from thermophilic like Bacillus licheniformis (BLA) and mesophilic Bacillus amyloliquefaciens (BAA). The conformational stability of BLA is slightly higher than BAA in GdmCl which are 2.94 and 2.53 kcal/mol respectively. BLA does not unfold even in 8.0 M urea at pH 7.0, while for BAA, the conformational stability in urea is calculated to be 2.22 kcal/mol. A structure-function relationship study of BLA reveals the non-coincidental unfolding by far UV-CD, enzyme activity and tryptophan fluorescence which indicates the presence of partially unfolded intermediates. The existence of intermediates in BLA during GdmCl induced unfolding was further confirmed by ANS fluorescence. The unfolding kinetics of both enzymes showed biphasic nature with slower unfolding of BLA compare to BAA pointing towards the higher kinetic stability of BLA than BAA. Taken together, our work demonstrates that the higher stability of BLA is mainly due to the combination of ionic and hydrophobic interactions.

Keywords: bacillus licheniformis; bla; licheniformis bla; alpha amylases; stability

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.