In present research, Hevea brasiliensis (Rubber Wood) converted into cellulose by pre-treatment with NaOH (5%) and NaClO2 (5%). In addition, the cellulose was converted to nanocellulose (NC) using ionic liquid,… Click to show full abstract
In present research, Hevea brasiliensis (Rubber Wood) converted into cellulose by pre-treatment with NaOH (5%) and NaClO2 (5%). In addition, the cellulose was converted to nanocellulose (NC) using ionic liquid, acid hydrolysis and TEMPO oxidation accompanied by ultra-sonication. The prepared nanocellulose was characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier transformation infrared spectroscopy (FT-IR). Thermal properties have been studied using thermogravimetric and differential thermal Analysis (TGA/DTA). FT-IR results clearly suggested that the synthetic approaches employed did not alter the principle chemical structure of rubber wood cellulose. SEM and AFM monographs reveal that synthetic approaches affect the morphology/surface topology of prepared nanocellulose. Among the three kinds of NC, NC by TEMPO approach had the largest aspect ratio and superior thermal stability.
               
Click one of the above tabs to view related content.