LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Production, purification and applications of raw starch degrading and calcium-independent α-amylase from soil rich in extremophile.

Photo from wikipedia

Calcium independent, raw starch hydrolyzing, acidic α-amylase (66 kDa) was synthesized by Bacillus subtilis S113 that is an aerobic, rod-shaped and Gram +ve bacteria. Purification of the enzyme was performed by… Click to show full abstract

Calcium independent, raw starch hydrolyzing, acidic α-amylase (66 kDa) was synthesized by Bacillus subtilis S113 that is an aerobic, rod-shaped and Gram +ve bacteria. Purification of the enzyme was performed by HiTrap Capto Q (Ion-exchange chromatography; 19.28-fold; 22.41% yield). The purified enzyme was found stable at broad acidic pH (4-6.5) and high-temperature range (40-80 °C), that fulfilled the necessary criteria and laid the foundation to be utilized in starch saccharification industry. Kinetic studies of the enzyme revealed that Km and Vmax of the enzyme was 0.22% and 357.14 U/mg respectively. Scanning electron microscopy studies showed that the enzyme was capable of completely hydrolyzing raw wheat and potato starch, further confirming its role in the starch industry. It was found that only 7.93% of the activity was loss at 4 °C when kept for one year.

Keywords: raw starch; amylase; purification; calcium independent; starch

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.