LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

It takes two to tango - The case of thebaine 6-O-demethylase.

Photo from archive.org

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times… Click to show full abstract

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times larger than necessary to accommodate a substrate (thebaine or oripavine) molecule. Since so far no crystal structures have been obtained for enzyme-substrate complex, which is necessary to explain the enzyme regiospecificity towards the C6-bound methoxy group, in this work we used computational methods and multi-parametric surface plasmon resonance measurements to elucidate the most likely structure of this complex and the reaction mechanism starting therefrom. Results of simulations and experiments unanimously indicate that the enzyme-substrate complex of T6ODM has a 1:2 stoichiometry. The key residues responsible for substrate binding are: Val-128, Glu-133, Met-150 and Agr-219 for the substrate in the distal position, and Asp-144, Leu-235 and Leu-353 for the proximal substrate molecule. QM/MM and DFT calculations show that the oxo ligand is bound trans to His-295 and the enzyme catalyzes hydroxylation of the C6-bound methoxy group according to the established rebound mechanism. The final stage of the demethylation reaction, which includes deformylation and enol-keton tautomerization steps, is most likely catalysed by water molecules and takes place in the solvent.

Keywords: tango case; takes two; demethylase; two tango; thebaine demethylase; substrate

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.