Glutathione S-transferases (GSTs) are multifunctional enzymes that play major roles in a wide range of biological processes, including cellular detoxification, biosynthesis, metabolism, and transport. The dynamic structural scaffold and diverse… Click to show full abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes that play major roles in a wide range of biological processes, including cellular detoxification, biosynthesis, metabolism, and transport. The dynamic structural scaffold and diverse functional roles of GSTs make them important for enzyme engineering and for exploring novel biotechnological applications. The present study reported a significant gain-of-function activity in GST caused by a point mutation at the conserved F136 residue. The fluorescence quenching and kinetic data suggested that both binding affinity and catalytic efficiency of the mutant enzyme to the substrates 1-chloro-2,4-dinitrobenzene (CDNB), as well as the glutathione (GSH), is increased. Molecular docking showed that the mutation improves the binding interactions of the GSH with several binding-site residues. The simulation of molecular dynamics revealed that the mutant enzyme gained increased structural rigidity than the wild-type enzyme. The mutation also altered the residue interaction network (RIN) of the GSH-binding residues. These phenomena suggested that mutations led to conformational alterations and dominant differential motions in the enzyme that lead to increased rigidity and modifications in RIN. Collectively, engineering GST with a single point mutation at conserved F136 can significantly increase its xenobiotic activity by increasing the catalytic efficiency that may be exploited for biotechnological applications.
               
Click one of the above tabs to view related content.