LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Screening of plant derived chalcones on the inhibition of potato apyrase: Potential protein biotechnological applications in health.

Photo by charlesdeluvio from unsplash

NTPDases (EC 3.6.1.5) are enzymes belonging to a protein family which have as a common feature the ability to hydrolyze di- and triphosphate nucleotides (ADP and ATP) to monophosphate nucleosides… Click to show full abstract

NTPDases (EC 3.6.1.5) are enzymes belonging to a protein family which have as a common feature the ability to hydrolyze di- and triphosphate nucleotides (ADP and ATP) to monophosphate nucleosides (AMP) in the presence of Ca+2 and Mg+. The potato apyrase has been the first protein of the NTPDase family to be purified. In mammals, these enzymes are involved in physiologic and sick processes as thromboregulation, inflammatory and immunologic responses. In this study, we investigated the in vitro potential of synthetic chalcones on the inhibition of potato apyrase purified from Solanum tuberosum. The protein was purified with high grade purity and its identity was confirmed by electrophoresis, western blot, and LC-MS/MS. Five out of the eight chemically synthetized chalcones analyzed in this study showed significant inhibition of the apyrase activity. The compound with the best rate of inhibition of ATP hydrolytic activity was able to promote 54% inhibition with a concentration of 3.125 μM. Ticlopidine, used as an inhibition drug control, was able to promote inhibitions around 50% of the activity (IC50 = 2.167 μM). Our results with the potato apyrase inhibition with the synthetic chalcones suggest that these compounds may use as potential lead candidates for the treatment of some diseases associated with nucleotides.

Keywords: inhibition potato; potato apyrase; inhibition; chalcones inhibition

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.