LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of nitrogen level on structural and functional properties of starches from different colored-fleshed root tubers of sweet potato.

Photo by margaret_jaszowska from unsplash

The nitrogen (N) influences the growth of sweet potato. However, it is unclear whether the different levels of N can affect starch physicochemical properties. In this study, 9 different colored-fleshed… Click to show full abstract

The nitrogen (N) influences the growth of sweet potato. However, it is unclear whether the different levels of N can affect starch physicochemical properties. In this study, 9 different colored-fleshed sweet potato varieties were planted in the same field with additional N fertilizer treatment of 0, 15 and 30 kg/ha. The physicochemical properties of starches from root tubers were measured. With increasing N level, the amylose content decreased in yellow-fleshed variety Sushu 16 and increased in white-fleshed variety Sushu 29 and purple-fleshed varieties Ningzishu 1 and 4, but did not significantly change in other varieties. The starch size decreased in purple-fleshed variety Ningzishu 1 and white-fleshed varieties Sushu 28 and Sushu 29 with increasing N treatment, but first increased then decreased in yellow-fleshed variety Sushu 16 and first decreased then increased in white-fleshed variety Sushu 24 and yellow-fleshed variety Sushu 25. The different levels of N treatment had no influence on protein content, crystalline structure, and gelatinization enthalpy of starch. The effects of N treatment on gelatinization temperatures and pasting viscosities of starches were determined by varieties and genotype backgrounds of sweet potato. The PLSR and PLS-DA were also carried out based on structural, thermal, and pasting parameters of starches.

Keywords: fleshed variety; different colored; variety sushu; sweet potato

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.