Innovative composites processed using sorted out and characterized precursors from nature were formulated, synthesized then applied to cotton cellulose in the fabric form to confer on the cellulose multifunctional performance… Click to show full abstract
Innovative composites processed using sorted out and characterized precursors from nature were formulated, synthesized then applied to cotton cellulose in the fabric form to confer on the cellulose multifunctional performance properties. Precursors embrace Moringa oleifera leaves aqueous and alcoholic extracts, chitosan, clay known as Kaolin and, silver nanoparticles (AgNPs). The latter were prepared under the reducing and stabilization actions of Moringa extracts. These Precursors are mixed to form binary or tertiary mixture formulations under variable formation conditions of the required composites. The composites and fabrics treated thereof were submitted to characterization, analysis and testing using traditional tools as well as state-of-the-art facilities including FT-IR, UV, Particle size analyser, TEM, SEM and EDX. Aqueous and alcoholic Moringa extracts exhibit different chemical attributes meanwhile both extracts fail to induce formation of AgNPs at up to pH 6. Intensive formation of AgNPs occurs only with the alcoholic extract provided that pH 8 or higher was employed. The particle size of AgNPs decreases by increasing the pH indicating chemical combination of Moringa extract and chitosan Moringa aqueous or alcoholic extract exhibit larger particle size than those containing chitosan and AgNPs. AgNPs were characterized by spherical shape with precise distribution of the particles. The nitrogen content, the physical properties and the mechanical properties of the treated fabrics were taken to demonstrate the magnitudes of intercalation and interactions of Moringa aqueous and alcoholic extracts individually and in composite with the cellulosic fabric. It was as well to emphasize the high antimicrobial activity imparted by current composites to the cellulosic fabrics. Equal emphasis was placed on UPF and easy-care properties of the treated fabrics. To this end, current research brings into focus novel cellulosic products with multifunctional performance as a direct impact of multifarious attributes caused by chemical combination of the composite in question and cellulosic fabrics.
               
Click one of the above tabs to view related content.