MMTNS were introduced into carboxymethyl cellulose-chitosan system to synthesize porous hydrogel adsorbent with stable structure and high dye handling capacity. Al-OH on edge of MMTNS formed hydrogen-bond (-OH···+NH3-) with -NH2… Click to show full abstract
MMTNS were introduced into carboxymethyl cellulose-chitosan system to synthesize porous hydrogel adsorbent with stable structure and high dye handling capacity. Al-OH on edge of MMTNS formed hydrogen-bond (-OH···+NH3-) with -NH2 on CS, CS then cooperated with CMC via amidation and chains interleaving, forming three-dimensional hydrogel. Morphology characterization revealed that hydrogel possessed microporous open-framework structure, facilitating free entrance of macromolecular MB dye to react with internal reaction sites in hydrogel. Factor tests indicated that high removal (97%) of MB was achieved via 0.2 g/L hydrogel within 360 min even after 5 adsorption-regeneration cycles. Adsorption process followed Pseudo-first-order, Pseudo-second-order kinetic model and Sips isotherm model, owing to both monolayer physical and chemical adsorption behavior of MB molecules onto homogeneous surface of hydrogel. Adsorption mechanism was attributed to ion-exchange, groups combination of carboxyl and hydroxyl, and Si active sites reaction. Such hydrogel realized promotion of polysaccharide polymers in materials design and wastewater treatment.
               
Click one of the above tabs to view related content.