LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation.

Photo from archive.org

Alzheimer's disease (AD) is marked by the presence of amyloid plaques, neurofibrillary tangles, oxidatively damaged neuronal macromolecules and redox sensitive ions. Reduction of amyloid plaques and oxidative stress emerge as… Click to show full abstract

Alzheimer's disease (AD) is marked by the presence of amyloid plaques, neurofibrillary tangles, oxidatively damaged neuronal macromolecules and redox sensitive ions. Reduction of amyloid plaques and oxidative stress emerge as a convincing treatment strategy. Plaque reduction is achieved by inhibition of BACE1, the rate limiting enzyme generating the prime constituent of plaques, Aβ, through proteolysis of the amyloid precursor protein. Here, we report a QSAR model with five descriptors, developed to screen natural compounds as potent BACE1 inhibitors. Seven compounds out of which five flavonols namely isorhamnetin, syringetin, galangin, tamarixetin, rhamnetin and two flavanonols namely dihydromyricetin, taxifolin were screened. The ability of these compounds were validated using the BACE1 activity assay. The antioxidant property were estimated by the DPPH and ABTS assay. Although inhibition assay implied syringetin to be a promising BACE1 inhibitor, its poor antioxidant activity leaves it less effective as a multitarget ligand. Exhibiting moderate dual ability, isorhamnetin and taxifolin qualified as multi-target scaffolds for AD therapeutics. Our study reveals the importance of 4'-OH in the B ring of flavonols and the lack of any effect of 5'-OH in flavanonols for BACE1 inhibition. In case of antioxidant activity favourable association of 3'-O-methylation derivatives was observed in flavonols.

Keywords: bace1 inhibitors; modelling screening; flavonoids bace1; inhibitors qsar; screening vitro; qsar modelling

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.