Grifola frondosa polysaccharides, especially β-glucans, showed the significant antitumor, hypoglycemic, and immune-stimulating activities. In the present study, a predominant regulatory subunit gfRho1p of β-1,3-glucan synthase in G. frondosa was identified… Click to show full abstract
Grifola frondosa polysaccharides, especially β-glucans, showed the significant antitumor, hypoglycemic, and immune-stimulating activities. In the present study, a predominant regulatory subunit gfRho1p of β-1,3-glucan synthase in G. frondosa was identified with a molecular weight of 20.79 kDa and coded by a putative 648-bp small GTPase gene gfRho1. By constructing mutants of RNA interference and over-expression gfRho1, the roles of gfRho1 in the growth, cell wall integrity and polysaccharide biosynthesis were well investigated. The results revealed that defects of gfRho1 slowed mycelial growth rate by 22% to 33%, reduced mycelial polysaccharide and exo-polysaccharide yields by 4% to 7%, increased sensitivity to cell wall stress, and down-regulated gene transcriptions related to PKC-MAPK signaling pathway in cell wall integrity. Over-expression of gfRho1 improved mycelial growth rate and polysaccharide production of G. frondosa. Our study supports that gfRho1 is an essential regulator for polysaccharide biosynthesis, cell growth, cell wall integrity and stress response in G. frondosa.
               
Click one of the above tabs to view related content.