LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pristine and modified chitosan as solid catalysts for catalytic and biodiesel production: A minireview.

Photo from wikipedia

Chitosan is one of the readily available polymers with relatively high abundance, biodegradable and sustainable materials with divergent functional groups that are employed in broad range of applications. Chitosan is… Click to show full abstract

Chitosan is one of the readily available polymers with relatively high abundance, biodegradable and sustainable materials with divergent functional groups that are employed in broad range of applications. Chitosan is widely used in many fields like adsorption, drug carrier for therapeutic activity, environmental remediation, drug formulation and among others. One of the unique features of chitosan is that it can be transformed to other forms like beads, films, flakes, sponges and fibres depending upon the applications. This review is aimed at showing the potential applications of chitosan and its modified solids in organic transformations. The number of existing articles is organized based on the nature of materials and subsequently with the types of reactions. After a brief description on the structural features of chitosan, characterization methods including various analytical/microscopic techniques and some of the best practices to be followed in catalysis are also discussed. The next section of this review describes the catalytic activity of native chitosan without any modifications while the subsequent sections provide the catalytic activity of chitosan derivatives, chitosan covalently modified with metal complexes/salts through linkers and chitosan as support for metal nanoparticles (NPs). These sections discuss number of organic reactions that include Knoevenagel condensation, oxidation, reduction, heterocycles synthesis, cross-coupling reactions and pollutant degradation among others. A separate section provides the catalytic applications of chitosan and its modified forms for the production of fatty acid methyl esters (FAME) through esterification/transesterification reactions. The final section summarizes our views on the future directions of this field in the coming years.

Keywords: chitosan solid; production; pristine modified; applications chitosan; solid catalysts; modified chitosan

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.