LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue.

Photo by kotliarenko from unsplash

Dyeing industry highly contributes to environmental pollution and this needs to be addressed on priority. Pd NPs/CMs, a highly efficient and reusable catalyst for methylene blue (MB) decolorization, were fabricated… Click to show full abstract

Dyeing industry highly contributes to environmental pollution and this needs to be addressed on priority. Pd NPs/CMs, a highly efficient and reusable catalyst for methylene blue (MB) decolorization, were fabricated by in-situ reduction method based on the cellulose microspheres (CMs). Pd NPs/CMs were characterized for the structure and catalytic performance by spectroscopic techniques such as SEM, EDS, XRD, IR, XPS, porosity, zeta potential, MS, and UV-visible spectroscopy, which all demonstrated that Pd NPs were distributed on the cellulose microspheres uniformly and exhibited excellent catalytic performances to decolorize a model organic dye MB in the presence of NaBH4 with catalytic efficiency higher than 99.8%. More importantly, Pd NPs/CMs were proven to show excellent reusability for at least five cycles. Decolorization mechanism of MB, via the destruction of the chromophores (CN and S) of MB, was established with the help of MS combined with IR and XPS. Blank experiments using pure cellulose microspheres were carried out simultaneously to estimate the level of catalytic capacity achieved to Pd NPs/CMs. These materials proved themselves having great potential in large scale applications to treat dye-containing wastewater.

Keywords: situ reduction; methylene blue; cellulose microspheres; nps cms; decolorization

Journal Title: International journal of biological macromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.