LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydroxypropyl chitosan-based dual self-healing hydrogel for adsorption of chromium ions.

Photo from wikipedia

A facile, environmentally benign approach has been developed for the preparation of dual self-healing and adsorption hydrogel through hydroxypropyl chitosan (HPCS), polyacrylamide (PAM) and polyvinyl alcohol (PVA). The self-healing capability… Click to show full abstract

A facile, environmentally benign approach has been developed for the preparation of dual self-healing and adsorption hydrogel through hydroxypropyl chitosan (HPCS), polyacrylamide (PAM) and polyvinyl alcohol (PVA). The self-healing capability of the hydrogels without any external stimulus is ascribed to dynamic Schiff-base bonds, borate bonds and hydrogen bonds, while the adsorption capacity of hydrogels came from the protonated amino group effect at a specific pH. It was demonstrated that the HPP DN hydrogel had a maximum equilibrium swelling ratio of 643% and a maximum compressive strength of 267 kPa. The weight loss of HPP DN hydrogel was 14.26% lower than that of HPCS/PAM single network hydrogel, furthermore, HPP DN hydrogel could achieve self-healing within 10 h. Due to the large number of active groups, the adsorption capacity of Cr6+ reached 95.31 mg/g. It could adsorb in a wide pH range of 1 to 6, and could describe by pseudo-first-order kinetic model and Langmuir adsorption isotherm model, which would provide a new idea for the adsorption and removal of heavy metal ions. In short, the prepared HPP hydrogel has dual self-healing ability, adsorption capacity and mechanical strength, which will make it a promising candidate for long-life adsorbent.

Keywords: dual self; adsorption; hydroxypropyl chitosan; hpp hydrogel; self healing

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.