LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution.

Photo by taiamint from unsplash

Metal organic frameworks (MOFs) are hybrid organic inorganic materials with unique properties such as well-defined pore structure, extremely high surface area, excellent chemical-thermal stability. MOFs-based constructs have been extensively engineered… Click to show full abstract

Metal organic frameworks (MOFs) are hybrid organic inorganic materials with unique properties such as well-defined pore structure, extremely high surface area, excellent chemical-thermal stability. MOFs-based constructs have been extensively engineered and used for applications, such as enzyme immobilization for bio-catalysis. To obtained a zeolitic imidazole framework-8 (ZIF-8) for enzyme immobilization, Candida rugosa lipase (CRL) was pretreated with calix [4]arene tetracarboxylic acid (Calix) and reacted with Zn and imidazole by co-precipitation method. The prepared biocomposite was characterized by SEM, EDX, FT-IR, and XRD. The prepared CRL@Calix-ZIF-8 with high encapsulation efficiency showed improved resistance to alkali and thermal conditions. The CRL@Calix-ZIF-8 with the biocatalytic activity was 2-folds higher than that of the CRL@ZIF-8 (without Calix). The free lipase lost its catalytic activity completely at 60 °C after 100 min, while the CRL@Calix-ZIF-8 and CRL@ZIF-8 retained about 84% and 73%. It was found that CRL@Calix-ZIF-8 and CRL@ZIF-8 still retained ∼83 and 67% of catalytic activity after its 6th use, respectively. The kinetic resolution of the immobilized lipases was examined for enantioselective hydrolysis of racemic naproxen methyl ester. CRL@Calix-ZIF-8 showed enantioselectivity against the racemic naproxen methyl ester, with E = 183 and 131 compared to the CRL@ZIF-8.

Keywords: crl calix; calix zif; ester; zif; calix

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.