LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit+ hematopoietic stem cells.

Photo by willy_teee from unsplash

The ability of natural killer (NK) cells to destroy cancerous cells with no prior sensitization has made them attractive candidates for cell therapy. The application of hydrogels must be notified… Click to show full abstract

The ability of natural killer (NK) cells to destroy cancerous cells with no prior sensitization has made them attractive candidates for cell therapy. The application of hydrogels must be notified as cell delivery vehicles in cell differentiation. The present study was conducted to investigate the effect of alginate-gelatin encapsulation on NK cell differentiation potential of C-kit+ cells. C-kit+ cells were differentiated to NK cells under both encapsulated and un-encapsulated conditions. Next, the cells were subjected to real-time polymerase chain reaction (PCR) and western blotting for the assessment of their telomere length and protein expressions, respectively. Afterward, culture medium was collected to measure cytokines levels. Thereafter, the differentiated NK cells were co-cultured with Molt-4 cells to investigate the potency of cell apoptosis by Annexin V/PI assay. A significant change was observed in the protein expression of Janus kinase/Signal transducers (JAK/STAT) pathway components. Additionally, the encapsulation caused an increase in the apoptosis of Molt-4 cells and telomere length of NK cells differentiated C-kit+ cells. Therefore, it can be concluded that the effects of encapsulation on NK cell's differentiation of C-kit+ cells could be resulted from the secreted cytokines of interleukin (IL)-2, IL-3, IL-7, and IL-12 as well as the increased telomere length.

Keywords: gelatin encapsulation; alginate gelatin; kit; differentiation potential; kit cells; encapsulation

Journal Title: International journal of biological macromolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.