Devising fluorescence-based turn-on probe for the specific and sensitive detection of Heparin is of utmost clinical importance. In this contribution, we have identified a molecular rotor based asymmetric cyanine probe,… Click to show full abstract
Devising fluorescence-based turn-on probe for the specific and sensitive detection of Heparin is of utmost clinical importance. In this contribution, we have identified a molecular rotor based asymmetric cyanine probe, thiazole orange (TO), which enables an efficient colorimetric and fluorimetric detection of Heparin. TO undergoes the formation of emissive H-aggregates upon interaction with Heparin that displays an impressive emission enhancement of ~22 fold together with drastic changes in the absorption spectra that yields a prominent colour change in the solution from orange to yellow. These seldom reported emissive H-aggregates of TO, serve as an efficient platform for Heparin detection with a LOD as low as 19 nM, fluorometrically and 34 nM colorimetrically. The TO-Heparin complex is also accompanied by a large change in the excited-state lifetime. The TO-Heparin complex has been further utilized for the detection of Protamine, which is the only medically affirmed antitoxin of Heparin. Overall, our sensing system offers several advantages, such as, simple, dual read-out, economic and specific detection of Heparin with longer excitation and emission wavelength, rapid naked eye detection and utilizes an in-expensive commercially available fluoprophore, TO. Most importantly, our sensing system also displays a good performance in the biologically complex human serum matrix.
               
Click one of the above tabs to view related content.